DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein.

نویسندگان

  • Hien Tran
  • Anne Brunet
  • Jill M Grenier
  • Sandeep R Datta
  • Albert J Fornace
  • Peter S DiStefano
  • Lillian W Chiang
  • Michael E Greenberg
چکیده

The signaling pathway from phosphoinositide 3-kinase to the protein kinase Akt controls organismal life-span in invertebrates and cell survival and proliferation in mammals by inhibiting the activity of members of the FOXO family of transcription factors. We show that mammalian FOXO3a also functions at the G2 to M checkpoint in the cell cycle and triggers the repair of damaged DNA. By gene array analysis, FOXO3a was found to modulate the expression of several genes that regulate the cellular response to stress at the G2-M checkpoint. The growth arrest and DNA damage response gene Gadd45a appeared to be a direct target of FOXO3a that mediates part of FOXO3a's effects on DNA repair. These findings indicate that in mammals FOXO3a regulates the resistance of cells to stress by inducing DNA repair and thereby may also affect organismal life-span.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myc and PI3K/AKT signaling cooperatively repress FOXO3a-dependent PUMA and GADD45a gene expression

Growth factor withdrawal inhibits cell cycle progression by stimulating expression of growth-arresting genes through the activation of Forkhead box O transcription factors such as FOXO3a, which binds to the FHRE-responsive elements of a number of target genes such as PUMA and GADD45a. Following exposure of cells to growth factors FOXO3a-mediated transcription is rapidly repressed. We determined...

متن کامل

Data Mining for Identification of Forkhead Box O (FOXO3a) in Different Organisms Using Nucleotide and Tandem Repeat Sequences

 Background: Deregulation of FOXO3a gene which belongs to Forkhead box O (FOXO) transcription factors, can cause cancer (e.g. breast cancer). FOXO factors have important role in ubiquitination, acetylation, de-acetylation, protein-protein interactions and phosphorylation. Understanding the regulation and mechanisms of FOXO3a can lead to cancer treatment. The aim of this study recent association...

متن کامل

Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis.

Genotoxic stress such as ionizing radiation can induce DNA damage and promote cell-cycle arrest or apoptosis through either a p53-dependent or -independent pathway. Recently, members of the FOXO Forkhead transcription factor family have been implicated in playing a role in both DNA repair and apoptosis in mammalian cells that promoted us to examine the role of FOXO transcription factors in ioni...

متن کامل

Insights into a Critical Role of the FOXO3a-FOXM1 Axis in DNA Damage Response and Genotoxic Drug Resistance

FOXO3a and FOXM1 are two forkhead transcription factors with antagonistic roles in cancer and DNA damage response. FOXO3a functions like a typical tumour suppressor, whereas FOXM1 is a potent oncogene aberrantly overexpressed in genotoxic resistant cancers. FOXO3a not only represses FOXM1 expression but also its transcriptional output. Recent research has provided novel insights into a central ...

متن کامل

Dynamic FoxO transcription factors.

Forkhead box O (FoxO) transcription factors FoxO1, FoxO3a, FoxO4 and FoxO6, the mammalian orthologs of Caenorhabditis elegans DAF-16, are emerging as an important family of proteins that modulate the expression of genes involved in apoptosis, the cell cycle, DNA damage repair, oxidative stress, cell differentiation, glucose metabolism and other cellular functions. FoxO proteins are regulated by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 296 5567  شماره 

صفحات  -

تاریخ انتشار 2002